CLASS XII PHYSICS CHAPTER 1. ELECTROSTATICS ANSWER KEY

ANSWER TO VERY SHORT ANSWER TYPE QUESTIONS

1. CHOOSE THE CORRECT OPTION ANSWERS:

- i) (c) Electric flux Φ is independent of size.
- ii) (b) E = -dv/dr
- iii) (a)Decreases K times
- iv) (a)-Q/4

SHORT ANSWER TYPE QUESTIONS FOR 1 & 2 MARKS

- 2. W = pE (cos Θ_2 cos Θ_1) = -pE (cos 90° cos 0°) = pE $3.\xi = \xi_0 \xi_r$
- 4. Yes $F_{12} = -F_{21}$
- 5. F is proportional to $1/d^2$; hence $f = d^2/d^2$; $f = d^2/d^2$. $f = d^2/d^2$. $f = d^2/d^2$. $f = d^2/d^2$. $f = d^2/d^2$.
- 6.No. dV/dr = -E = 0; or dV = 0; or V = constant
- 7. Let at P, V = 0; therefore, V(q₁) at P = $(1/4\pi\epsilon_0) 4 \times 10^{-6}/x$ V(q₂) at P = $(1/4\pi\epsilon_0) 2 \times 10^{-6}/(1-x)$

Therefore, At P = 0, (4/x) - (2/1-x) = 0; x = 2/3.

- 8. $\tau = pEsin\theta = 4 \times 10^{-9} \times 5 \times 10^{4} \times sin 30^{\circ} = 10 \text{ Nm}.$
- 9. $\phi = q/\epsilon_0 = [E. ds = 5 \times 10^{-6} / 8.85 \times 10^{-12} = 5.65 \times 10^5 \text{ Nm}^2\text{C}^{-1}]$

LONG ANSWER TYPE QUESTIONS FOR 3 & 5 MARKS

10. τ =pEsinθ

 $dW = \tau d\theta = \tau = pEsin\theta d\theta$; $\int dW = \int pEsin\theta d\theta = -pE (cos \Theta_2 - cos\Theta_1)$

- 11. Refer to the summary given with the assignment.
- 12. U =1/2 CV²; Since C = ε_0 A/d; Therefore, U =(1/2) ε_0 A/d(Ed)²

Therefore, energy per unit volume = U/Ad = $(1/2) \varepsilon_0 E^2$

13. 1 μF

14. Take the help of the following:

(b) A parallel-plate capacitor is constructed by filling the space between two square plates with blocks of three dielectric materials, as in the figure below. You may assume that $\ell >> d$. Find an expression for the capacitance of the device in terms of the plate area A and d, κ_1 , κ_2 , and κ_3 .

The capacitor can be regarded as being consisted of three capacitors, $C_1 = \frac{\kappa_1 \varepsilon_0 A/2}{d}$, $C_2 = \frac{\kappa_2 \varepsilon_0 A/2}{d/2}$ and $C_3 = \frac{\kappa_3 \varepsilon_0 A/2}{d/2}$, with C_2 and C_3 connected in series, and the combination connected in parallel with C_1 . Thus, the equivalent capacitance is

$$\begin{split} C &= C_1 + \left(\frac{1}{C_2} + \frac{1}{C_3}\right)^{-1} = C_1 + \frac{C_2 C_3}{C_2 + C_3} = \frac{\kappa_1 \varepsilon_0 A/2}{d} + \frac{\varepsilon_0 A}{d} \left(\frac{\kappa_2 \kappa_3}{\kappa_2 + \kappa_3}\right) \\ &= \frac{\varepsilon_0 A}{d} \left(\frac{\kappa_1}{2} + \frac{\kappa_2 \kappa_3}{\kappa_2 + \kappa_3}\right) \end{split}$$
