Welland Gouldsmith School, Patuli

Class - XI Subject – Mathematics Topic – Set Theory Worksheet Answer : 1

- 1. i) Let A = $\{5, 25, 125, 625\}$ Ans. : $\{x : x = 5^n, n \in N \text{ and } n \le 4\}$
 - ii) Let A = $\{1/2, 2/3, 3/4, 4/5 \dots\}$ Ans. : $\{x : x = \frac{n}{n+1}, x \in N\}$
 - iii) A = {-1, 0, 2} P(A) = { ϕ , {-1}, {0}, {2}, {-1, 0}, {0, 2}, {-1, 2}, {-1, 0, 2}}
 - iv) U = {1, 2, 340} A = { x : x is a factor of 42} \therefore A = {1, 2, 3, 6, 7, 14, 21} \therefore n(A) = 7
 - v) $A = \{4, 6, 8\}$ subsets of A are $\{\phi\}, \{4\}, \{6\}, \{8\}, \{4, 6\}, \{6, 8\}, \{4, 8\}, \{4, 6, 8\}$

2.
$$A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8, 10\}, S = \{1, 2, 3, \dots, 10\}$$

 $A \cup B = \{ x : x \in A \lor x \in B \} = \{1, 2, 3, 4, 6, 8, 10 \}$ $A \cap B = \{ x : x \in A \land x \in B \} = \{2, 4 \}$ $\therefore (A \cup B)' = \{ x : x \in S \land x \notin (A \cup B) \}$ $= \{5, 7, 9 \}$ $(A \cap B)' = \{ x : x \in S \land x \notin (A \cap B) \}$ $= \{1, 3, 5, 6, 7, 8, 9, 10 \}$

3.
$$A = \{1, 3\}, B = \{3, 5\}, C = \{5, 10\}$$

 $A \times B = \{(1, 3), (1, 5), (3, 3), (3, 5)\}$
 $B \times A = \{(3, 1), (3, 3), (5, 1), (5, 3)\}$
 $\therefore A \times B \neq B \times A$
Again $B \cup C = \{3, 5, 10\}$
 $A \times (B \cup C) = \{(1, 3), (1, 5), (1, 10), (3, 3), (3, 5), (3, 10)\}$
 $A \times C = \{(1, 5), (1, 10), (3, 5), (3, 10)\}$

$$(A \times B) \cup (A \times C) = \{(1, 3), (1, 5), (3, 3), (3, 5), (1, 10), (3, 10)\}$$
verified
Again (B \cap C) = {5}
 $\therefore A \times (B \cap C) = \{(1, 5), (3, 5)\}$
 $\therefore (A \times B) \cap (A \times C) = \{(1, 5), (3, 5)\}$ verified
4.
 $A = \{2, 3, 5, 7, 8\}, B = \{1, 5, 9\}, A' = \{1, 4, 6, 9\}$
 $U = A \cup A' = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
i)
 $\therefore (A \cup B) = \{x : x \in A \lor x \in B\} = \{1, 2, 3, 5, 7, 8, 9\}$
 $(A \cup B)' = \cup - (A \cup B) = \{4, 6\}$
 $A' = U - A = \{1, 4, 6, 9\}$
 $B' = U - B = \{2, 3, 4, 6, 7, 8\}$
 $A' \cap B' = \{4, 6\}$ [verified]
ii)
 $B - A = \{x : x \in B \land x \notin A\} = \{1, 9\}$
 $A' \cap B = \{1, 9\}$ [verified]
5.
 $n (U) = 30, n(A) = 15, n (B) = 5, n (A \cap B) = 3$
 $n(A) = n (U) - n (A') = 30 - 15 = 15$
 $n (A \cup B) = n (A) + n (B) - n (A \cap B) = 15 + 5 - 3 = 17$
 $n (A - B) = n (A \cup B) - n (B) = 17 - 5 = 12$
6.
 $n (U) = 60, n (A) = 35, n (A \cap B) = 15$
 $n ((A \cup B)) = 20$
 $n (A \cup B) = n (U) - n ((A \cup B)') = 60 - 20 = 40$
 $n (A \cup B) = n (D) - n ((A \cup B)') = 60 - 20 = 40$
 $n (A \cup B) = n (B) - n (A \cap B) = 20 - 15 = 5$
7.
 $LH.S. = A - (B \cup C)$
 $= A \cap (B \cup C)'$
 $= A \cap (B' \cap C)$ [by De Moraines Law]
 $= (A \cap A) \cap (B' \cap C)$ [by Idempotent Law]
 $= (A \cap A) \cap (B' \cap C)$ [by Idempotent Law]
 $= A \cap [A \cap B] \cap C]$ [by Associative Law]
 $= A \cap [C \cap (A \cap B]) = 10$ [by Associative Law]
 $= A \cap [C \cap (A \cap B)] = 10$ yassociative Law]
 $= A \cap [C \cap (A \cap B)] = 10$ yassociative Law]
 $= A \cap [C \cap (A \cap B)]$ [by Associative Law]
 $= A \cap [C \cap (A \cap B)]$ [by Associative Law]
 $= (A \cap C) \cap (A \cap B)$ [by Associative Law]
 $= (A \cap C) \cap (A \cap B)$ [by Associative Law]
 $= (A \cap C) \cap (A \cap B)$ [by Associative Law]

- = $(A \cap B') \cap (A \cap C')$ [by Commutative Law) = $(A - B) \cap (A - C)$ [verified]
- 8. Here $B \subseteq A$ $\therefore x \in B \Rightarrow x \in A$ Let $B - A \neq \phi$ \therefore There is atleast one element x in B - ANow $x \in B - A$ $x \in B \land x \notin A$ $\therefore x \in A \land x \notin A$ [$x \in B \Rightarrow x \in A$] $\therefore x \in A \land x \notin A$ cannot be true. $\therefore B - A \neq \phi$ is wrong. $\therefore B - A = \phi$ [verified]
- 9. Let A be the sets of people who can speak English, B be the sets of people who can speak Hindi, C be the sets of people who can speak Bengali.

 $\therefore n (A) = 31, n (B) = 36, n(C) = 27$ $n (A \cap B) = 10, n (C \cap A) = 9, n (B \cap C) = 11$ $\therefore n (A \cup B \cup C) = n (A) + n (B) + n (C) - n (A \cap B) - n (C \cap A) - n (B - \cap C) + n (A \cap B \cap C)$ $\therefore n (A \cup B \cup C) = 31 + 36 + 27 - 10 - 9 - 11 + n (A \cap B \cap C)$ $= 64 + n (A \cap B \cap C)$

The value of n (A \cup B \cup C) will be least if n (A \cap B \cap C) = 0 \therefore The Least number of people = 64

And n (A \cup B \cup C) will be maximum if n (A C B \cap C) is maximum

 \therefore max of n(A \cap B \cap C)=Minimum of n(A \cap B), n(B \cap C), n(C \cap A)

- \therefore Minimum number is = 9
- \therefore The greatest no. of people in the group = 64 + 9 = 73.

10. Let X no. of people read newspaper A. Y no. of people read newspaper B \therefore n(X) = 50, n(Y) = 20, n(X \cap Y) = 10 \therefore n(XU Y) = n(X) + n(Y) - n(X \cap Y) = 50 + 20 - 10 = 60 11. Let A no. of students eat burger B no. of students eat noodles. $n(A) = 50, n(B) = 42, n(A \cap B) = 24$ $\therefore n(A \cup B) = 50 + 42 - 24 = 68$

i) No. of students eat only burger
=
$$n(A) - n(A \cap B)$$

= $50 - 24 = 26$

- ii) No. of students eat only noodles = $n(B) - n(A \cap B)$ = 42 - 24 = 18
- iii) No. of students who eat any of the two food items = 68.