<u>Welland Gouldsmith School ,Patuli</u> <u>Class- IX</u> <u>Chemistry</u> <u>Session 2020-21</u>

LANGUAGE OF CHEMISTRY

Valency

Valency is the combining capacity of an element. The number of electrons donated or accepted by an atom of an element so as to have electronic configuration of nearest noble gas is called its valency.

Variable Valency

Certain elements have more than one valency. They exhibit variable valency. For example, copper, tin, iron and mercury exhibit variable valency. Copper combines with oxygen to form cuprous oxide (Cu_2O) and cupric oxide (CuO).

Valency of oxygen being two, combining capacity of copper in the first case is one and that in the second case is two. The suffix "ous" is used to indicate the lower valency and the suffix "ic" to indicate the higher valency. The following table gives the names of some compounds with variable valencies of elements.

Compound	Valency	Ion
Cuprous (Cu ₂ O)	1	Cu^+
Cupric oxide (CuO)	2	Cu^{2+}
Ferrous oxide (FeO)	2	Fe^{2+}
Ferric oxide (Fe ₂ O ₃)	3	Fe ³⁺

LIST OF COMMON ACIDIC AND BASIC RADICALS.

Monovalent electropositive		
Ammonium	NH₄⁺	
Aurous [Gold (I)]	Au⁺	
Argentous [Silver (I)]	Ag⁺	
Cuprous [Copper(I)]	Cu⁺	
Hydrogen	H⁺	
Lithium	Li [*]	
Sodium	Na⁺	
Potassium	K*	
Mercurous [Mercury (I)]	Hg⁺	

Divalent electropositive		
Argentic	Ag ^{2*}	
Barium	Ba ^{2*}	
Calcium	Ca ^{2*}	
Cupric [Copper (II)]	Cu2+	
Ferrous [Iron (II)]	Fe²⁺	
Magnesium	Mg ²⁺	
Manganese	Mn²⁺	
Mercuric [Mercury (II)]	Hg ²⁺	
Nickel	Ni²⁺	
Plumbous [Lead (II)]	Pb2*	
Platinous [Platinum (II)]	Pt ^{2*}	
Stannous [Tin (II)]	Sn2*	
Zinc	Zn²⁺	

Basic Radicals

Trivalent electropositive		
Aluminium	Al ^{3*}	
Arsenic	As3*	
Auric [Gold (III)]	Au ^{3*}	
Bismuth	Bi³⁺	
Chromium	Cr³⁺	
Ferric [Iron (III)]	Fe ^{3*}	

Tetravalent electropositive		
Plumbic [Lead (IV)]	Pb⁴⁺	
Platinic [Platinium (IV)]	Pt⁴⁺	
Stannic [Tin (IV)]	Sn⁴⁺	

ACIDIC RADICAL LIST

Ion	Formula		
Nitrate	NO3	Ion	Formula
Nitrite	NO2-	Ammonium	NH_4^+
Phosphate	PO_{4}^{3-}	Acetate	$C_2 H_3 O_2^{-}$
Hydrogen Phosphate	HP04 ²⁻	Hypochlorite	<i>clo</i> -
Dihydrogen Phosphate	$H_2PO_4^-$	Chlorite	Cl02
Sulfate	SO4 ²⁻	Chlorate	ClO_3^-
Carbonate	CO3 ²⁻	Perchlorate	ClO_4^-
Hydrogen Carbonate	HCO ₃	Permanganate	MnO_4^-
Hydroxide	OH-	Chromate	CrO_4^{-2}
		Dichromate	$Cr_2 O_7^{-2}$

COMPOUND AND ITS CHARACTERISTICS

A **compound** is a substance made up of a definite proportion of two or more elements. A **chemical formula** tells us the number of atoms of each element in a compound. It contains the symbols of the atoms of the elements present in the compound as well as how many there are for each element in the form of subscripts.

Characteristics of Compounds

All compounds share some common properties which enable us to identify them.

• Compounds are formed by chemical reactions, which usually involve an exchange of energy (heat/light) with the surroundings.

• A compound has properties that are different from the properties of its constituent elements

How is sodium chloride different from sodium or chlorine?

COMMON AND CHEMICAL NAMES OF SOME COMPOUNDS

Common Name	Chemical Name	Chemical Formulae
Dry Ice	Solid Carbondioxide	CO,
Slaked Lime	Calcium Hydroxide	Ca (OH)2
Bleaching Powder	Calcium Oxychloride	CaOCI,
Nausadar	Ammonium Chloride	NH_CI
Caustic Soda	Sodium Hydroxide	NaOH
Rock Salt	Sodium Chloride	NaC1
Caustic Potash	Potassium Hydroxide	КОН
Potash Alum	Potassium Aluminium Sulphate	K2SO4 AI2(SO4)3.24H2O
Epsom	Magnesium Sulphate	MgSO ₄ .7H ₂ O
Quick Lime	Calcium Oxide	CaO
Plaster of Paris	Calcium Sulphate	(CaSO ₄) ^{1/2} H ₂ O
Gypsum	Calcium Sulphate	CaSO ₄ 2H ₂ O
Green Vitriol	Ferrous Sulphate	FeSO ₄ 7H ₂ O
Mohr's Salt	Ammonium Ferrous Sulphate	FeSO4 (NH4)2 SO4 6H2O
Blue Vitriol	Copper Sulphate	CuSO ₄ .5H ₂ O
White Vitriol	Zinc Sulphate	ZnSO ₄ .7H ₂ 0
Marsh Gas	Methane	CH4
Vinegar	Acetic Acid	CH3COOH
Potash Ash	Potassium Carbonate	K2CO3
Нуро	Sodium Thiosulphate	Na2S2O3 . 5H20
Baking Powder	Sodium Bicarbonate	NaHCO ₃
Washing Soda	Sodium Carbonate	Na2CO3 . 10H2O
Magnesia	Magnesium Oxide	MgO
Chalk (Marble)	Calcium Carbonate	CaCO3

WRITING CHEMICAL FORMULA

BALANCING CHEMICAL EQUATION

Balance the following equation:

Mg+HCl→MgCl2+H2

Identify the reactants and products This has been done in the question.

Write the equation for the reaction This has been done in the question.

Count the number of atoms of each element in the reactants and products

Reactants: Mg=1 atom H=1 atom, Cl=1 atom Products: Mg=1 atom, H=2 atoms, Cl=2 atoms

Balance the equation The equation is not balanced since there are two chlorine atoms in the product and only one in the reactants. If we add a coefficient of two to the HCl to increase the number of H and Cl atoms in the reactants, the equation will look like this:

Mg+2HCl→MgCl2+H2

Check that the atoms are balanced

If we count the atoms on each side of the equation, we find the following:

Reactants: Mg=1 atom, H=2 atoms, Cl=2 atoms

Products: Mg=1 atom, H=2 atoms, Cl=2 atoms

The equation is balanced. The final equation is:

Mg+2HCl \rightarrow MgCl₂+H₂

DETERMINATION OF MOLECULAR MASS AND PERCENTAGE COMPOSITION

Relative Molecular Mass The Relative Molecular Mass (M_r) is the sum of the Relative Atomic Mass (A_r) of each atom in the molecule. How to find the relative molecular mass? 1. Determine the molecular formula of the molecule.

- 1. Determine the molecular formula of the molecule.
- Determine the number of atoms of each element in the molecule.
 Use the periodic table to determine the atomic mass of each element.
- A. Multiply the number of atoms of each element with the atomic mass.
- 5. Add the values to get the relative molecular mass.

Example:

Find the M_r of ammonia

Example:

Find the M_r of ammonium sulfate

Calculating Percentage Composition

Calculate the percentage composition of magnesium carbonate, MgCO₃.

Formula mass of magnesium carbonate: 24.31 g + 12.01 g + 3(16.00 g) = 84.32 g $Mg = \left(\frac{24.31}{24.31}\right) \cdot 100 = 28.83\%$

$$Mg = \left(\frac{2.034}{84.32}\right) \bullet 100 = 28.83\%$$
$$C = \left(\frac{12.01}{84.32}\right) \bullet 100 = 14.24\%$$
$$O = \left(\frac{48.00}{84.32}\right) \bullet 100 = \underline{56.93\%}$$
$$100 = \underline{56.93\%}$$